Detector R&D for NSLS-II

D. Peter Siddons NSLS

Outline

- NSLS-II detector R&D
- Cultural issues
- Silicon detectors
- NSLS Detectors
- LCLS detectors
- Emerging Technologies for Sensor/ASIC Integration
- Requirements for NSLS-II Detectors
- Proposed R&D Plan

Detector R&D for XPCS

- NSLS-II does not have a detector R&D program
 - Any R&D will be independently funded
 - FY08 budget will not allow any new R&D
- No optimal detector exists for XPCS
 - Need to develop a new, REVOLUTIONARY class of detector
 - Significant computation 'on-pixel'
 - Potentially viable technology under development (ILC R&D, IT industry)
- LCLS detectors will be useful at millisecond timescales

Culture

- SR and HEP are cultural opposites
 - HEP: teams of hundreds for one experiment, complex detector system
 - SR: teams of <10 usually, simple apparatus.
 - HEP: Experiment takes years
 - SR: Experiment takes hours or days
 - HEP: Detector IS experiment
 - Scientists closely involved in design
 - SR: SAMPLE is experiment: SR and detector a necessary evil
 - Scientists just want the result

Culture

- SR and HEP are cultural opposites
 - HEP: teams of hundreds for one experiment, complex detector system
 - SR: teams of <10 usually, simple apparatus.
 - HEP: Experiment takes years
 - SR: Experiment takes hours or days
 - HEP: Detector IS experiment
 - Scientists closely involved in design
 - SR: SAMPLE is experiment: SR and detector a necessary evil
 - Scientists just want the result

Sato, Solomon, Hyland, Keterings, Lehmann, Cornell Univ. 2006

What is the ideal XPCS detector?

- Specifications:
 - 1 micron pixels
 - 1000 megapixels
 - 1ns time resolution
 - 100% efficient at all energies
 - Free
- Various physical and fiscal realities conspire to prevent this being realized.
- Photon-counting provides best S/N.

Simplest silicon detector

- vertical P-N Junction
- Wafer bulk is active (unlike commercial CMOS)
- Wafer must be very high resitivity (>5kohm-cm) to allow full depletion
- SiO2 provides electrical isolation between adjacent diodes

Internal fields and trajectories

- Photon produces e-h pairs.
- charges drift towards surfaces due to bias field (wafer fully depleted). Takes about 20ns for 0.4mm wafer.
- Transverse momentum of charges causes charge spreading
- For 10keV photon, spreading is 20-30um for 0.4mm wafer.
- SMALL PIXELS WILL PERFORM POORLY as photon-counting detectors.

Absorption length for Si & Ge

- Materials science needs E > 20keV to penetrate dense materials (alloys, ceramics etc.)
- Biology needs higher E to reduce radiation damage

NSLS Detectors

- A series of detectors for selected SR applications has been developed over the past ~5 years
- Key technologies:
 - Silicon pad and strip detectors (Inst. Div.)
 - CMOS ASICs (Inst. Div.)
 - System design, packaging, fixturing, DAQ (NSLS)
- Significant performance advantages due to the ability to utilize highly parallel architectures

The MAIA Project

Si pad sensor

preamp/shaper ASIC Peak detector derandomizer multiplexer ASIC

pipelined, parallel processor and digitizer

- **Preamp/shaper ASIC** achieves 184eV resolution (Mn Kα).
- 32-channel peak detecting derandomizer and multiplexer with time-over-threshold for pileup rejection or arrival time for XPCS.
- Dynamic Analysis method demonstrated for imaging of SXRF data at X27A.
- DA real-time spectral deconvolution demonstrated at 10⁸ events/second using HYMOD.
- •FPGA could be programmed to perform autocorrellation in real time.

Tests of the Maia-96 system

Some examples from NSLS **September 2007 experiment**

Long run (#295): Acacia stems, Western Australia

Tests of the Maia-96 system

Some examples from NSLS September 2007 experiment

Long run (#204): Iron-oxide nodules, Rose Dam, WA

1625 x 2625 pixels (13 x 21 mm²)
6.3 hours (5 ms dwell per pixel)
7.5 x 7.5 μm² pixels

0-2 MHz count rates → good image counting statistics

Fe-Y-Cu RGB composite

Tests of the Maia-96 system Iron oxide nodules, Ros<mark>e</mark> Dam WA Fe-Y-Cu RGB composite (1500 x 2624 pixel images, 13 x 21 mm²)

Application to XPCS?

- Each photon can be time-stamped to submicrosecond accuracy
- Each photon is labelled with its energy and detector number
- Analysis of this 'list-mode' data can yield correlations, possibly in real time.
- Is this useful?
 - Relatively few pixels (~1000)
 - large pixels (1mm^2)
 - Good time resolution (microseconds)
- Can use pinhole array to determine effective pixel size
 - Just lose coverage; add more detectors!

Detector for Diffraction Applications

- 80mm long silicon PSD
- 640 channels, ASIC readout
- 125um pitch
- 4mm wide
- 0.4mm thick

sensor

• 350eV energy resolution @

5.9keV

Application Examples

Real-time growth / surface modification

- Beamline X21 in-situ growth endstation
- Several high-impact pubs

Reflectivity / truncation rods / GISAXS

- Tests at Cornell and APS (COBRA studies)
- System delivered for X9 undulator/CFN

Powder diffraction

- Detectors in use at X16C, X14A

Inelastic scattering

- System delivered to Argonne
- x10 intensity, x2 resolution on MERIX
- Collaboration with Taiwan NSRRC

Lots of interest

- Cornell
- Other APS
- SSRL

Large array for NSLS

- 120 degrees
- ~7000 channels
- 0.014 deg. Resolution
- ~1ms readout time
- ~350eV energy resolution

LCLS detectors

LCLS is a Free-Electron Laser x-ray source being built at SLAC (Stanford). It will produce <100fs long x-ray pulses at 120Hz.

BNL is contracted to supply fast readout Imaging detectors They must:

- Be integrating detectors because of LCLS time structure
- Have large dynamic range for single-shot experiments
- Have low noise
- Have < 8ms readout time

These detectors will also be valuable at a storage ring

They will be useful for XPCS at millisecond timescales

Active matrix readout

Charge stored in diode capactance (switches off)

Readout amplifier on each column

Each ADC reads 16 columns (multiplexed)

Switches turned on sequentially row-by-row

Charge read out and digitized

1us per row => 1ms for 1000 rows.

- 8-channel 40MHz/channel ADC chip
- 8 chips, each ADC multiplexed among 16 columns
- 2Gb/s data rate

Readout system

Row-by-row readout, 1us/row

8 Fast (>20MHz) 8-channel ADC's multiplexed e.g. x16 columns = 1024

2GB/s instantaneous raw data from ADCs

250MB/s averaged, i.e. to be stored, based on 120Hz cycle. More if rep. rate is upgraded.

Data streamed through FPGA to fast memory and terabyte disk store.

FPGA does background correction

JFET vs MOSFET structure comparison

Both start with high-res. wafer..

 Both make implants on both sides of the wafer

• BNL's process needs careful alignment between layers

• IBM's process is self-aligning for several key layers

- If successful, IBM's process allows more complex circuits to be designed than BNL's
- We have first devices from both processes in hand.

Images of BNL matrix structures

- Upper picture shows gate ring metal and charge collection capacitor plate
- Lower picture shows complete 2 x 2 array, showing two metal layers separated by a polyimide insulation layer.

IBM collaboration

- MOS version of XAMPS
- Fabricated to our design by IBM Yorktown Heights
- Potentially lower noise
- Potentially massproduceable

Readout ASIC

- Problem is to handle both large signals and small signals while maintaining low noise for small signals
- Circuit works by 'pumping' large charge packets out of integrator summing node until amplfier falls into linear operation, then digitizing remainder.

The future

- Need to find a technology to put more functionality in each pixel
- Requirements for fabricating circuits are different from those for fabricating sensors
- How can we integrate these divergent requirements?

Possible Monolithic Approaches for Sensor/ASIC Integration

- Problem: sensor and readout optimize differently
- Solutions:
- Existing Technology
 - sensor in CMOS process (MAPS)
 - transistor in sensor process (DEPFET, XAMPS)
- Charge-Shifting
 - capture charge in a potential well and physically move it to output port (CCD, CDD)
- Physical Connection
 - bump bonding (PbSn, In)
 - direct wafer-wafer bonding

Possible Monolithic Approaches for Sensor/ASIC Integration

- Problem: sensor and readout optimize differently
- Solutions:
- Existing Technology
 - sensor in CMOS process (MAPS)
 - transistor in sensor process (DEPFET, XAMPS)
- Charge-Shifting
 - capture charge in a potential well and physically move it to output port (CCD, CDD)
- Physical Connection
 - bump bonding (PbSn, In)
 - direct wafer-wafer bonding

Bump-bonding: Examples

PILATUS 1M
Swiss Light Source

U.S. DEPARTMENT OF ENERGY

direct wafer-wafer bonding

- Ultimate goal is monolithic integration of any technology
- Immediate push in industry is for reducing wireload distribution in digital ICs
- Science applications being pursued in optical/IR imaging, HEP tracking
- FNAL and KEK have active HEP designs
- Processes available at Lincoln Labs, JPL, OKI Semiconductor, IBM (?)

A Monolithic Photon-counting pixel detector

26 x 26 um (G. Deptuch, 2006)

- -280 transistors
- Built using standard SOI CMOS
- Impossible to properly prepare 'detector'.

Bonding CMOS and sensor after sensor implant gives full control over interfaces

60 x 60 um pixel would allow ~1500 transistors

- Better analog circuits
- More bits
- Double-buffering (no deadtime for readout?)

Process flow for 3D Chip

3D

Via

- 3 tier chip (tier 1 may be CMOS)
 - 0.18 um (all layers)
 - SOI simplifies via formation
- Single vendor processing
- Fabricate individual tiers

2) Invert, align, and bond wafer 2 to wafer 1

3) Remove handle silicon from wafer 2, etch 3D Vias, deposit and CMP tungsten

4) Invert, align and bond wafer 3 to wafer 2/1 assembly, remove wafer 3 handle wafer, form 3D vias from tier 2 to tier 3

Goals for NSLS-II Detector Development

A 'monolithic' photon-counting pixel detector

- 3D version of Pilatus
 - Smaller pixels
 - Better yield

A pixelated detector with spectrum-per-pixel

- Simultaneous spectroscopy/diffraction detector
- energy and spatial resolution
- Laue diffraction
- x-ray microprobes with microdiffraction and fluorescence analysis on the same sample position with the same detector

A pixel detector with multiple-tau time autocorrelation electronics on each pixel

- megapixel detector with on-pixel correlators can provide sufficient sampling density to access the sub-microsecond domain
- 3D technology will provide the necessary integration density

Acknowledgements

- NSLS detector group: Tony Kuczewski, Rich Michta, Kate Feng, Gabriella Carini, Angelo Dragone, Dennis Poshka, Tony Lenhard, Shu Cheung
- BNL Instrumentation Division: Gianluigi De Geronimo, Paul O'Connor, Pavel Rehak, Zheng Li, Wei Chen, Don Pinelli, John Triolo, Rolf Beuttenmuller
- CSIRO group: Chris Ryan, Gareth Moorhead, Robin Kirkham, Paul Dunn
- BNL, DOE Basic Energy Sciences for funding.

